Auswahl der wissenschaftlichen Literatur zum Thema „Physics, Low Temperature|Physics, Condensed Matter“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Physics, Low Temperature|Physics, Condensed Matter" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Physics, Low Temperature|Physics, Condensed Matter":

1

Feng, Yejun, R. Jaramillo, Jiyang Wang, Yang Ren und T. F. Rosenbaum. „Invited Article: High-pressure techniques for condensed matter physics at low temperature“. Review of Scientific Instruments 81, Nr. 4 (April 2010): 041301. http://dx.doi.org/10.1063/1.3400212.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hallock, Bob, und Mikko Paalanenn. „New developments in low temperature physics“. Journal of Physics: Condensed Matter 21, Nr. 16 (20.03.2009): 160402. http://dx.doi.org/10.1088/0953-8984/21/16/160402.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

von Keudell, A., und V. Schulz-von der Gathen. „Foundations of low-temperature plasma physics—an introduction“. Plasma Sources Science and Technology 26, Nr. 11 (12.10.2017): 113001. http://dx.doi.org/10.1088/1361-6595/aa8d4c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bauer, E., G. Hilscher, H. Kaldarar, H. Michor, E. W. Scheidt, P. Rogl, A. Gribanov und Y. Seropegin. „Formation and low temperature physics of“. Journal of Magnetism and Magnetic Materials 310, Nr. 2 (März 2007): e73-e75. http://dx.doi.org/10.1016/j.jmmm.2006.10.273.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Maris, Humphrey J. „Phonon physics and low temperature detectors of dark matter“. Journal of Low Temperature Physics 93, Nr. 3-4 (November 1993): 355–64. http://dx.doi.org/10.1007/bf00693446.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Richardson, Robert C., Eric N. Smith und Robert C. Dynes. „Experimental Techniques in Condensed Matter Physics at Low Temperatures“. Physics Today 42, Nr. 10 (Oktober 1989): 126–27. http://dx.doi.org/10.1063/1.2811189.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Behringer, R. P. „Experimental Techniques in Condensed Matter Physics at Low Temperatures“. American Journal of Physics 57, Nr. 3 (März 1989): 287. http://dx.doi.org/10.1119/1.16062.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ponkratov, Vladimir V., Josef Friedrich, Jane M. Vanderkooi, Alexander L. Burin und Yuri A. Berlin. „Physics of Proteins at Low Temperature“. Journal of Low Temperature Physics 137, Nr. 3/4 (November 2004): 289–317. http://dx.doi.org/10.1023/b:jolt.0000049058.81275.72.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Nucciotti, A. „Low Temperature Detectors for Neutrino Physics“. Journal of Low Temperature Physics 176, Nr. 5-6 (20.12.2013): 848–59. http://dx.doi.org/10.1007/s10909-013-1006-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kibble, T. W. B., und G. R. Pickett. „Introduction. Cosmology meets condensed matter“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, Nr. 1877 (05.06.2008): 2793–802. http://dx.doi.org/10.1098/rsta.2008.0098.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB (‘Cosmology in the Laboratory’) that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF (‘Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology’). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting ‘Cosmology meets condensed matter’, held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.

Dissertationen zum Thema "Physics, Low Temperature|Physics, Condensed Matter":

1

Lupien, Christian. „Piezoresistive torque magnetometry at low temperature“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ37143.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Christian, Aaron Brandon. „Magnetic and Thermal Properties of Low-Dimensional Single-Crystalline Transition-Metal Antimonates and Tantalates“. Thesis, Montana State University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10268687.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:

This work contributes to the study of magnetic interactions in the low-dimensional antiferromagnets M(Sb,Ta)2O6, where M is a transition metal. By virtue of the trirutile structure, M-O-O-M chains propagate along [110] at z = 0 and [110] at z = 1/2 of the unit cell. These chains are separated along [001] by sheets of weakly-interacting diamagnetic ions. The spin-exchange coupling perpendicular to the chains is weak, permitting the low-dimensional classification. Single crystals have been grown using chemical vapor deposition and the floating zone method. Magnetization, in-field heat capacity, and high-resolution thermal expansion measurements have been performed along various axes, revealing significant anisotropy due to the peculiar magnetic structures and low dimensionality.

The Neel temperature, TN, at which long-range order occurs is found to be unstable against the application of magnetic field above 2 T. Large fields tend to lower TN of the set of moments with projections along the applied field. Moments which are aligned perpendicular to the field are significantly less affected. This can lead to the formation of a secondary peak in heat capacity when magnetic field is along either [110] or [110]. The change in heat capacity at the location of the newly formed peak means there is a change in entropy, which depends upon the direction of applied field with respect to the magnetic moments. Consequently, an anisotropic magnetocaloric effect arises due to the unique magnetic structure. The anisotropic nature of this effect has potential applications in magnetic refrigeration.

3

Safranski, Christopher. „Transport measurements and fabrication of superconductor-exchange spring magnet-superconductor systems“. California State University, Long Beach, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Carter, Faustin Wirkus. „A transition-edge-sensor-based instrument for the measurement of individual He2* excimers in a superfluid 4He bath at 100 mK“. Thesis, Yale University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10012481.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:

This dissertation is an account of the first calorimetric detection of individual He*2 excimers within a bath of superfluid 4He. When superfluid helium is subject to ionizing radiation, diatomic He molecules are created in both the singlet and triplet states. The singlet He molecules decay within nanoseconds, but due to a forbidden spin-flip the triplet molecules have a relatively long lifetime of 13 seconds in superfluid He. When He* 2 molecules decay, they emit a ~15 eV photon. Nearly all matter is opaque to these vacuum-UV photons, although they do propagate through liquid helium. The triplet state excimers propagate ballistically through the superfluid until they quench upon a surface; this process deposits a large amount of energy into the surface. The prospect of detecting both excimer states is the motivation for building a detector immersed directly in the superfluid bath.

The detector used in this work is a single superconducting titanium transition edge sensor (TES). The TES is mounted inside a hermetically sealed chamber at the baseplate of a dilution refrigerator. The chamber contains superfluid helium at 100 mK. Excimers are created during the relaxation of high-energy electrons, which are introduced into the superfluid bath either in situ via a sharp tungsten tip held above the field-emission voltage, or by using an external gamma-ray source to ionize He atoms. These excimers either propagate through the LHe bath and quench on a surface, or decay and emit vacuum-ultraviolet photons that can be collected by the detector.

This dissertation discusses the design, construction, and calibration of the TES-based excimer detecting instrument. It also presents the first spectra resulting from the direct detection of individual singlet and triplet helium excimers.

5

Alonzo-Proulx, Olivier. „Low-temperature thermal conductivity of the amorphous superconductor FexNi₁-xZr₂“. Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97890.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thermal conductivity is a powerful tool to probe the phonon and electron exitations in a solid, especially in superconductors were one can basically tune the respective electronic and phononic contributions by applying a magnetic field below Tc.
After a short review on the concepts of superconductivity, thermal conductivity and amorphous matter, we present a study of the thermal conductivity of an exotic material, the amorphous metallic superconductor Fe0.5Ni 0.5Zr2. The results indicate an unexpected dominant electonic contribution to the thermal conductivity across the superconducting transition, in accordance with an inhomogeneous sample composed of a bulk normal phase with inhomogeneous superconducting phases.
6

Hetel, Iulian Nicolae. „Quantum Critical Behavior In The Superfluid Density Of High-Temperature Superconducting Thin Films“. The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1204918571.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Brecht, Teresa Lynn. „Micromachined quantum circuits“. Thesis, Yale University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10783438.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:

Quantum computers will potentially outperform classical computers for certain applications by employing quantum states to store and process information. However, algorithms using quantum states are prone to errors through continuous decay, posing unique challenges to engineering a quantum system with enough quantum bits and sufficient controls to solve interesting problems. A promising platform for implementing quantum computers is that of circuit quantum electrodynamics (cQED) using superconducting qubits. Here, two energy levels of a resonant circuit endowed with a Josephson junction serve as the qubit, which is coupled to a microwave-frequency electromagnetic resonator. Modern quantum circuits are reaching size and complexity that puts extreme demands on input/output connections as well as selective isolation among internal elements. Continued progress will require adapting sophisticated 3D integration and RF packaging techniques found in today's high-density classical devices to the cQED platform. This novel technology will take the form of multilayer microwave integrated quantum circuits (MMIQCs), combining the superb coherence of three-dimensional structures with the advantages of lithographic integrated circuit fabrication. Several design and fabrication techniques are essential to this new physical architecture, notably micromachining, superconducting wafer bonding, and out-of-plane qubit coupling. This thesis explores these techniques and culminates in the design, fabrication, and measurement of a two-cavity/one-qubit MMIQC featuring qubit coupling to a superconducting micromachined cavity resonator in silicon wafers. Current prototypes are extensible to larger scale MMIQCs for scalable quantum information processing.

8

Rao, K. Umar. „Positron interactions at low-dimensional condensed surfaces“. Thesis, Royal Holloway, University of London, 1988. http://repository.royalholloway.ac.uk/items/9042f7f2-0cb6-4d26-90ff-957fe870187a/1/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A microprocessor control system for automatic data acquisition in a photon spectroscopy system was developed. The control process performed Doppler broadening measurements over the temperature range 4.2-600K with simultaneous recording when necessary of pressure. After work on the chalcogenide semiconductor (Pb,Ge)Te, Doppler broadening studies concentrated on the phenomenon of gas condensation on cooled graphite substrates. This class of adsorbent, of proven homogeneity was found ideal to explore the interaction of positrons at surfaces. By measurement of positronium, adlayer formation of methane, krypton, argon, nitrogen and oxygen was followed. All gases produced peaks in positronium emission with an investigation of the substrate further revealing an underlying thermal variation. Sound evidence in the form of accurate simultaneous pressure measurements and isotherms was found for a coverage of one half at the maximum in positronium. These studies of gas physisorption were conducted under a variety of temperatures and with pressures embracing atmospheric to under one Torr. Although results for the gases were of the same form each produced different maximum levels of positronium which appeared to relate to substrate-adsorbate binding energy. Maximum emission in the case of argon showed a temperature dependence however this requires verification. Oxygen was a special case as it yielded 12[percent] para-positronium at half-coverage. The coupling of this to a low 1.5[percent] ortho-positronium emission was attributed to chemical quenching. A convolution procedure based on the superposition of an additional para-positronium derived narrow gaussian to the usual gaussian and inverted parabola components was employed for an estimate of the positronium energy. This was used to attack the question of whether positronium is bound at the surface or is created flying.
9

Greer, Allan J. Jr. „Low internal magnetic fields in anisotropic superconductors“. W&M ScholarWorks, 1994. https://scholarworks.wm.edu/etd/1539623852.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This thesis is a theoretical, numerical study of the magnetic fields which exist in the anisotropic, high temperature superconductors like $YBa\sb2Cu\sb3O\sb{7-\delta}$, or YBCO for short, using both the anisotropic London theory and simulations based on existing muon spin rotation techniques. The thesis first describes the muon spin rotation ($\mu$SR) techniques, and then gives a brief discussion of superconductivity with regard to the London theory of anisotropic, type II superconductors. Next, numerical results of the application of this theory to YBCO are presented. Three dimensional surface plots of the magnetic field components within the flux line lattice (FLL) are shown, as well as the corresponding contour plots of the fields. Field distributions are calculated from these surfaces, and the graphs are presented. These distributions correspond to the real part of the Fourier transform of the muon histogram, and a comparison between data taken on a polycrystalline sample and the theoretical prediction is made. In addition, variation of the field distributions with parameters such as penetration depth, angle of the average field, and the magnitude of the average field is discussed. The last part of the thesis is a theoretical study of the behavior of muons which have stopped within a superconductor. The muons are assumed to stop uniformly throughout the FLL area, and the precession of each about its local field is recorded as the projection of its polarization along each of three mutually perpendicular "detectors." The depolarization of these signals as a function of time is an indication of the existence of transverse field components which exist within the FLL due solely to the anisotropy of the material. In order to further investigate these off axis fields, we have developed an extension of the usual $\mu$SR techniques, coupled with Fourier analysis, which yields new information. For example, with the proper analysis procedure, one may determine to good precision the direction of the average internal field B with respect to the applied field H$\sb{a}$. Other quantities, which we call moments of the field distribution, may also be determined.
10

Buckingham, David Tracy Willis. „High-Resolution Thermal Expansion and Dielectric Relaxation Measurements on H2O and D2O Ice Ih“. Thesis, Montana State University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10607201.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:

Ice Ih, formed by freezing liquid water below 273∼K at atmospheric pressure, is well-known and highly-studied, but some of its fundamental physical properties have mystified scientists since the early twentieth century. The thermal expansion is one of those properties; the low relative-resolution of past measurements has left questions regarding the structural isotropy and negative thermal expansion (NTE). Furthermore, the existence of relaxation phenomena near 100∼K, related to the residual entropy at 0∼K, may reveal itself through subtle features in the thermal expansion and, thus, warrants further investigation. Here we measure the thermal expansion of ultra-pure single crystal ice from 5–265∼K with 106 times higher relative resolution than has previously been made. The data reveal a distinct crossover to NTE below 62∼K, and a third-order transition along the crystallographic \(c\)-axis near 100∼K, as evident by an unambiguous relaxational decrease in the thermal expansion coefficient on cooling. To further understand the nature of the transition, isotopic substitution and dielectric measurements were performed.

Three properties of the dielectric relaxation in ice were probed at temperatures between 80--250∼K; the thermally stimulated depolarization (TSD) current, static electrical conductivity, and dielectric relaxation time. The dielectric data agree with relaxation-based models and provide for the determination of activation energies which identify the dielectric relaxation in ice as being dominated by Bjerrum defects below 140∼K. An anisotropy was also found in the data which revealed that molecular reorientations, in the form of propagating Bjerrum point defects, are energetically favored along the \(c\)-axis between 80--140∼K. Furthermore, a similar relaxational effect to that observed in the thermal expansion was observed in the TSD along \(c\), providing a strong correlation between dielectric relaxation and inherent thermodynamic relaxation in ice. Finally, isotopic substitution in both measurement sets indicates the transition is related the movements of hydrogen nuclei, not those of the whole molecule, and provides details about the low-temperature phonon modes. These findings paint a picture of ice as a proton-disordered crystal which undergoes a partial ordering on cooling near 100∼K but, before an ordered equilibrium state is realized, the exponentially increasing relaxation time rapidly slows the ordering and ultimately freezes-in the residual entropy, causing a continuous decrease in the thermal expansion coefficient.

Bücher zum Thema "Physics, Low Temperature|Physics, Condensed Matter":

1

Morandi, Giuseppe. Field Theories for Low-Dimensional Condensed Matter Systems: Spin Systems and Strongly Correlated Electrons. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Egger, Reinhold. Low-Dimensional Functional Materials. Dordrecht: Springer Netherlands, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Winter Meeting on Low Temperature Physics (12th 1991 Morelos, México). Superconducting ceramics: XII Winter Meeting on Low Temperature Physics, Vista Hermosa, Morelos, México, 13-16 January, 1991. Herausgegeben von Heiras Jesus L, Sansores L. E und Valladares A. A. Singapore: World Scientific, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

ICTP Summer Course (1992 Trieste, Italy). Low-dimensional quantum field theories for condensed matter physicists: Lecture notes of ICTP Summer Course, Trieste, Italy, September 1992. Herausgegeben von Lundqvist Stig 1925-, Morandi Giuseppe, Yü Lu 1937- und International Centre for Theoretical Physics. Singapore: World Scientific, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Okiji, Ayao. Correlation Effects in Low-Dimensional Electron Systems: Proceedings of the 16th Taniguchi Symposium Kashikojima, Japan, October 25-29, 1993. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Grimmeiss, H. G., und A. R. Peaker. Low-dimensional structures in semiconductors: From basic physics to applications. Boston, MA: Springer, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

NATO Advanced Research Workshop on Organic and Inorganic Low-Dimensional Crystalline Materials (1987 Minorca, Spain). Organic and inorganic low-dimensional crystalline materials. New York: Plenum Press, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Yukawa International Seminar (4th 1991 Kyoto). Low dimensional field theories and condensed matter physics: Proceedings of the 4th Yukawa International Seminar, July 28-August 3, 1991, Kyoto. Kyoto: Progress of Theoretical Physics, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

NATO, Science Forum '90 Highlights of the Eighties and Future Prospects in Condensed Matter Physics (1990 Biarritz France). Highlights in condensed matter physics and future prospects. New York: Plenum Press, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sheahen, Thomas P. Introduction to high-temperature superconductivity. New York: Plenum Press, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Physics, Low Temperature|Physics, Condensed Matter":

1

Bose, Indrani. „Low-dimensional Quantum Spin Systems“. In Field Theories in Condensed Matter Physics, 359–408. Gurgaon: Hindustan Book Agency, 2001. http://dx.doi.org/10.1007/978-93-86279-07-1_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Powell, Ben J. „Introduction to Effective Low-Energy Hamiltonians in Condensed Matter Physics and Chemistry“. In Computational Methods for Large Systems, 309–66. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470930779.ch10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Stiles, K., A. Kahn, D. G. Kidlay und G. Margaritondo. „Initial stages of Schottky barrier formation: Temperature effects“. In Perspectives in Condensed Matter Physics, 228–32. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0657-0_30.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Gonzalez-Mestres, L., und D. Perret-Gallix. „Low Temperature Detectors for Neutrinos and Dark Matter“. In Astronomy, Cosmology and Fundamental Physics, 297–302. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0965-6_21.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Fiorini, E. „The Possible Impact of Thermal Detectors in Nuclear and Subnuclear Physics“. In Low Temperature Detectors for Neutrinos and Dark Matter, 113–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72959-1_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Dietl, T. „Low-Temperature Properties of Materials“. In Encyclopedia of Condensed Matter Physics, 172–77. Elsevier, 2005. http://dx.doi.org/10.1016/b0-12-369401-9/00733-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bauer, E. „Low-Energy Electron Microscopy“. In Encyclopedia of Condensed Matter Physics, 161–72. Elsevier, 2005. http://dx.doi.org/10.1016/b0-12-369401-9/00583-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Skośkiewicz, T. „Thermal Conductivity at Low Temperatures“. In Encyclopedia of Condensed Matter Physics, 159–64. Elsevier, 2005. http://dx.doi.org/10.1016/b0-12-369401-9/01168-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

„Low-dimensional Quantum Spin Systems“. In Field Theories in Condensed Matter Physics, herausgegeben von Indrani Bose, 359–408. CRC Press, 2019. http://dx.doi.org/10.1201/9780429187520-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Pellegrini, Vittorio, und Aron Pinczuk. „INELASTIC LIGHT SCATTERING BY LOW-LYING EXCITATIONS OF QUANTUM HALL FLUIDS“. In Problems of Condensed Matter Physics, 182–96. Oxford University Press, 2007. http://dx.doi.org/10.1093/acprof:oso/9780199238873.003.0012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Physics, Low Temperature|Physics, Condensed Matter":

1

Ramakrishnan, S. „Condensed matter physics at ultra-low temperatures“. In SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4709864.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Andrei, N. „Low Temperature Transport Properties of Strongly Interacting Systems — Thermal Conductivity of Spin-1/2 Chains“. In HIGHLIGHTS IN CONDENSED MATTER PHYSICS. AIP, 2003. http://dx.doi.org/10.1063/1.1639599.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Swain, John, Allan Widom und Yogendra Srivastasva. „The Dirac Equation in Low Energy Condensed Matter Physics“. In 38th International Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.282.0346.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Matteppanavar, Shidaling, Shivaraja I., Sudhindra Rayaprol und Basavaraj Angadi. „Low temperature dielectric and impedance studies on magnetoelectric Pb(Fe0.5Nb0.5)O3 ceramic“. In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946709.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Singh, Yadunath. „Low temperature electrical conductivity measurements under high pressure up to 10 GPa“. In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946744.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Pal, Shreyasi, Soumen Maiti und Kalyan Kumar Chattopadhyay. „Morphology induced photo-degradation study of low temperature, chemically derived ZnO/SnO2 heterostructure“. In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946454.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gazda, Piotr, Alicja Pełka, Anna Ostaszewska-Liżewska und Michał Nowicki. „Hysteretic GMI behavior of amorphous materials in low magnetizing fields“. In APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5119467.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Matteppanavar, Shidaling, Shivaraja I., Sudhindra Rayaprol und Basavaraj Angadi. „Low temperature dielectric and conductivity relaxation studies on magnetoelectric Pb(Fe2/3W1/3)O3“. In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946159.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Adediran, Anthonia O., und Hishamuddin Bin Mohd Ali. „Low-income’s housing affordability in Nigeria: A case of Ado-Ekiti“. In APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5118061.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ramli, Norhaslinawati, Muhammad Ruzmil Rusli, Izanoordina Ahmad, Abdul Halim Abd Rahman und Nor Amalia Sapiee. „Application of water and wind energy for low cost portable mobile phone charger (PMPC)“. In APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5118104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie